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Abstract Sudden cardiac death is responsible for several

hundred thousand deaths each year in the United States.

Multiple lines of evidence suggest that perturbation of gap

junction expression and function in the heart, or what has

come to be known as cardiac gap junction remodeling,

plays a key mechanistic role in the pathophysiology of

clinically significant cardiac arrhythmias. Here we review

recent studies from our laboratory using genetically engi-

neered murine models to explore mechanisms implicated in

pathologic gap junction remodeling and their proarrhyth-

mic consequences, with a particular focus on aberrant

posttranslational phosphorylation of connexin43.
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Connexins and Gap Junctions

Connexins comprise a family of proteins encoded by as

many as 20 genes in most mammalian species (Willecke

et al. 2002). Substantial experimental evidence has dem-

onstrated that connexins oligomerize into channels, which

are organized into arrays at the gap junction. Channels

formed from single connexin isoforms (homomeric/

homotypic channels) have distinct biophysical properties,

which can most easily be studied in heterologous expres-

sion systems (Harris 2001). Characteristic biophysical

parameters include such properties as unitary conductance,

voltage dependence, as well as size and charge selectivity

(Spray and Burt 1990; Spray et al. 1992). There is also

evidence that individual connexin isoforms may mix and

match to form complex heteromeric and/or heterotypic

channels; these more complex assemblies may have bio-

physical properties that differ from those formed from only

a single connexin isoform (Harris 2001). Indeed, this

molecular diversity is postulated to provide a mechanism

for physiological diversity and regulation (Giovannone

et al. 2011; Kanno and Saffitz 2001). Importantly, this

combinatorial complexity may be directly relevant to

understanding the pathophysiology of gap junctions, as

aberrant regulation and/or mutations of a single connexin

isoform may exert dominant effects on alternative conn-

exin isoforms.

Gap Junction Remodeling and Arrhythmogenesis

There is compelling experimental evidence linking abnor-

malities in gap junctions with a highly proarrhythmic

substrate (reviewed in Severs et al. 2008). These data

include pathologic studies of hearts from patients with a

broad assortment of acquired arrhythmic syndromes

including ischemic and hypertrophic cardiomyopathies,

inherited diseases such as arrhythmogenic right ventricular

cardiomyopathy (ARVC) (Saffitz 2009; Severs 2002;

Severs et al. 2004, 2006, 2008), human genetic studies of

patients with somatic (Gollob et al. 2006; Thibodeau et al.

2010) or germ line (Paznekas et al. 2003) mutations in

connexin genes, as well as genetically engineered murine

models created by our own group (Gutstein et al. 2001) and

others (van Rijen et al. 2004). Indeed, in recent years a

growing body of literature suggests that gap junction

remodeling represents a ‘‘final common pathway’’
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predisposing to arrhythmias in response to diverse patho-

logic insults to the heart. The mechanistic relationship

between gap junction remodeling and the increased pro-

pensity for arrhythmic activity is multifactorial (Kanno and

Saffitz 2001). Abnormal localization and/or gating of

intercellular channels disturbs the highly orchestrated

temporal and spatial pattern of cardiac excitation, with

slow and oftentimes heterogeneous conduction conducive

to reentrant activity. Heterogeneous gap junction remod-

eling may also enhance the dispersion of repolarization

(Poelzing et al. 2004), another highly proarrhythmic factor.

Genetically Engineered Murine Models

The carboxyl-terminus of Cx43 contains numerous sites that

are subject to posttranslational phosphorylation and these

modifications are thought to regulate virtually all aspects of the

Cx43 life cycle, including translation, trafficking, degradation,

and gating, as reviewed in (Lampe and Lau 2000, 2004; Solan

and Lampe 2009). Altered phosphorylation of Cx43 has been

observed in response to a variety of pathologic stimuli,

including acute ischemia (Beardslee et al. 2000), hypoxic

stress (Matsushita et al. 2006), rapid pacing (Akar et al. 2007)

Fig. 1 Aberrant posttranslational phosphorylation of Cx43 in ODDD

mutant hearts. a Western blot analysis using antibodies recognizing

all forms of Cx43 (panCx43) and nonphosphorylated Cx43 (np-Cx43)

showing specific loss of phosphorylated Cx43. Lanes 1–4 are from

wild-type hearts and lanes 5–8 are from ODDD hearts. b Western

blot analysis using antibodies recognizing all forms of Cx43

(panCx43), phosphoS365-Cx43 (pS365) and phosphoS325/328/330-

Cx43 (pS325), showing specific loss of PS365 and pS325. Lanes 1, 3,

5, 7 and 9 are from wild-type hearts and lanes 2, 4, 6 and 8 are from

ODDD hearts. c Immunohistochemical staining of wild-type and

ODDD mutant hearts with panCx43, pS325 and pS365 antibodies.

Phosphorylated forms of Cx43 are virtually absent in ODDD mutant

hearts. Bar 20 lm. d Representative signal-averaged surface electro-

cardiograms (lead II) from a wild type (WT) and an ODDD mutant

mouse. Note the diminished QRS amplitude in the mutant. e Optical

mapping of the left ventricular surface of a representative WT heart

and 3 individual ODDD mutant hearts showing significant slowing of

conduction in the mutant hearts. f Programmed electrical stimulation

showing return of sinus rhythm after premature beats in a wild type

heart, but induction of sustained VT in an ODDD heart (middle), and

spontaneous VT in an ODDD heart (right). Adapted from Kalcheva

et al. (2007)
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and other stressors. Several years ago we developed a murine

model of the human syndrome oculodentodigital dysplasia

(ODDD), an autosomal-dominant systemic disorder caused by

mutations in the Cx43 gene (Kalcheva et al. 2007; Paznekas

et al. 2003). Unexpectedly, because the missense mutation

(I130T) was at a distance from the serine-rich carboxy-

terminus, we observed a profound defect in the posttrans-

lational phosphorylation of Cx43 at both serine 365

(a PKA-dependent site) and the triplet of serines at 325,

328, and 330 (CK1d-dependent sites), as defined by using

phospho-specific antibodies generated by the Lampe labo-

ratory. These mice also demonstrated significant abnor-

malities in cardiac impulse propagation and increased

susceptibility to induced cardiac arrhythmias (Fig. 1).

We next sought to extend these results to a more com-

mon and arguably more relevant model of cardiac disease,

pressure-overload hypertrophy induced by transverse aortic

constriction (TAC). Imposition of hemodynamic overload

causes a similar time-dependent reduction in posttransla-

tional phosphorylation of Cx43 at these same sites, espe-

cially the CK1d-dependent sites (Qu et al. 2009), and as

with the ODDD mutant mice, we observed significant

slowing of cardiac impulse propagation and increased

arrhythmogenicity (Fig. 2). Importantly, treatment with the

aldosterone receptor antagonist spironolactone, a drug

which has been shown to diminish sudden arrhythmic death

in human clinical trials (Pitt et al. 1999), blunted the

development of gap junction remodeling and reversed the

functional abnormalities as well. Taken together with our

findings in the ODDD mutant mice, these data suggested

that aberrant posttranslational phosphorylation of Cx43

might be a common mechanism through which both

intrinsic (i.e., genetic) and extrinsic (acquired) stressors

result in pathologic gap junction remodeling.

Fig. 2 Structural, molecular and functional gap junction remodeling

with pressure overload hypertrophy. a Cross-sections of hearts

showing progressive hypertrophy after transverse aortic constriction

(TAC). b Western blot analysis demonstrating progressive reduction

in total and phosphoCx43 expression in total cellular lysates (T) or

Triton X-100 insoluble pellet fractions (P). Antibodies recognized the

Cx43 C-terminus (Cx43-C); Cx43 amino-terminus (Cx43-N); vincu-

lin (Vinc); S365-phosphoCx43 (pS365) or S325/328/330-phospho-

Cx43 (pS325). c Immunostaining showing progressive loss of

junctional Cx43 with TAC, especially S325/328/330-pCx43. d Rep-

resentative optical maps demonstrating progressive slowing of

conduction velocity after TAC. e Immunostaining showing loss of

Cx43 gap junction plaques in TAC mice treated with vehicle alone

(T-SPI), but substantial improvement in mice treated with spirono-

lactone (T ? SPI), comparable to sham-operated mice receiving

vehicle alone (S-SPI) or spironolactone (S ? SPI). Scale bar 50 lm.

f Representative optical maps from each of the 4 groups. Adapted

from Qu et al. (2009)
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Nonetheless, given the multiplicity of kinase target sites

that might be affected during acute and chronic stress, these

studies alone did not establish a direct link between aber-

rant phosphorylation of Cx43, gap junction remodeling and

arrhythmic susceptibility. Therefore, to unequivocally

determine the importance of CK1d-dependent phosphory-

lation, we created two new strains of mutant mice, in which

the serine 325, 328 and 330 (the CK1d target sites) were

mutated to either nonphosphorylatable alanines (S3A mice)

or phosphatase-resistant, phosphomimetic glutamic acid

residues (S3E mice) (Remo et al. 2011). Both strains of

mutant mice were grossly indistinguishable from wild-type

(WT) controls at birth and throughout development, and

there were no significant differences with regards to base-

line physiological and echocardiographic measurements.

For many years it has been known that posttranslational

phosphorylation of Cx43 influences its electrophoretic

mobility by SDS-PAGE (Crow et al. 1990). Interestingly,

immunoblotting of total heart homogenates and junctional

membrane enriched samples from the mutant mice dem-

onstrated that mutations in the triplet of serines signifi-

cantly influenced Cx43 mobility. Cx43 immunoreactive

bands from Cx43-S3E mutant mice migrated more slowly

and conversely those from Cx43-S3A mutant mice migra-

ted more rapidly than those observed in WT hearts.

Moreover, immunofluorescent staining demonstrated that

Cx43-S3A mice had significantly less junctional Cx43

compared to WT or S3E mice (Fig. 3). These results sug-

gest that the inhibition of CK1d-dependent phosphorylation

of Cx43, as demonstrated in vivo by the Cx43-S3A mutant

mice, interferes with either trafficking of Cx43 to the

junctional membrane or its stability after assembly into gap

junction plaques. These molecular changes were associated

with significant functional sequelae. The Cx43-S3A mutant

mice displayed significantly increased susceptibility to

inducible ventricular tachycardia whereas the Cx43-S3E

mice were relatively resistant. Moreover, the Cx43-S3E

mutant mice produced gap junctions that were resistant to

pathologic gap junction remodeling associated with TAC

(Fig. 3). Taken together, these data clearly confirmed a

mechanistic link between posttranslational phosphorylation

of Cx43 and gap junction formation, pathologic gap junc-

tion remodeling and arrhythmic susceptibility within the

context of the intact organism.

Fig. 3 Molecular and functional analysis of CK1d mutant mice.

a High-resolution Western blot analysis of whole cell lysates (WCL)

or Triton X-100 insoluble pellets (pellet) prepared from ventricles of

mice with the indicated genotypes, probed with polyclonal panCx43

antisera. Wild type Cx43 lysate treated with calf intestine phosphatase

(CIP) migrates at P0 and is shown for comparison to various major

phosphorylated forms of Cx43 (P1, P2, P3). b Representative

immunofluorescent staining with panCx43 (Cx43, green) and N-cad-

herin (N-cad, red) antibodies at baseline and 4 weeks after TAC.

Scale bar 10 lm. Magnified views of individual gap junction plaques

for each genotype after TAC are shown below. c Representative

immunoblots of whole cell lysates at baseline (B) and after TAC

(T) from each of the indicated genotypes, probed with polyclonal

panCx43 and GAPDH antibodies. d Representative activation maps

from each of the indicated genotypes at baseline and after TAC,

showing blunting of conduction slowing in S3E mutant mice.

Adapted from Remo et al. (2011)

278 B. F. Remo et al.: Connexin43 Cardiac Gap Junction Remodeling

123



Regulation by the Nonreceptor Tyrosine Kinase Src

More recently, we have turned our attention to the role of

Src kinase-dependent phosphorylation of Cx43 in the heart.

Atkinson et al. (1981) originally reported that infection of

cells with an avian sarcoma virus resulted in junctional

uncoupling; this effect was subsequently shown to be due

to the activity of the viral tyrosine kinase v-src (Chang

et al. 1985) and more specifically, to phosphorylation of

Cx43 on tyrosine residues in the carboxy terminus

(Swenson et al. 1990; Filson et al. 1990). Subsequently,

Toyofuku et al. (1999) reported that endogenous, or cel-

lular c-Src was increased in myopathic BIO 14.6 hamsters

and that activated phospho-Src reduced gap junctional

coupling between cardiac myocytes, suggesting a role for

dysregulated Src signaling and pathologic gap junction

remodeling within the context of the intact organism.

Moreover, they also showed that Src could directly phos-

phorylate Cx43 and this posttranslational modification

diminished the interactions of Cx43 with ZO-1 (Toyofuku

et al. 2001). Conversely, Giepmans et al. (2003) showed

that the receptor protein tyrosine phosphatase mu

(RPTPmu) also interacted with the carboxy-terminus of

Cx43 and could prevent Src-mediated closure of gap

junction channels, suggesting dynamic regulation of Cx43

by the opposing actions of tyrosine kinases and phospha-

tases. Subsequent studies by Pointis and colleagues,

although performed in nonexcitable Sertoli cells, have not

only confirmed that activated pSrc can bind to Cx43 and

displace ZO-1, but also that this molecular reorganization

promotes rapid, dynamin2-dependent endocytic internali-

zation of Cx43 GJs (Gilleron et al. 2008, 2011). Sorgen and

colleagues have begun to examine the relevance of these

molecular events within the context of the intact heart,

using the canine infarct model. They found that the path-

ologic gap junction remodeling in the epicardial border

zone was characterized by activation of Src and a molec-

ular reorganization of Src and ZO-1 (Kieken et al. 2009),

although the posttranslational status of Cx43 was not

examined in detail. Moreover, in apparent contrast to the

model of Pointis et al (Gilleron et al. 2008), their studies

suggested that activated Src preferentially bound to ZO-1,

resulting in an ‘‘untethering’’ of Cx43 from its ZO-1

scaffold, allowing it to migrate from the intercalated disc to

the lateral myocyte membrane.

Interestingly, recent evidence suggests that aldosterone

signaling, acting through either a genomic or nongenomic

mechanism, may increase Src activity (Kobayashi et al.

2006; Shi et al. 2011). These data are intriguing given our

recent observation that treatment of aortic banded mice

with the aldosterone receptor antagonist spironolactone

resulted in significant amelioration of pathologic gap

junction remodeling (Qu et al. 2009). Further supporting a

fundamental role for Src in pathologic gap junction

remodeling is the recent report by Dudley’s group exam-

ining angiotensin converting enzyme overexpressing

transgenic mice, in which Cx43 remodeling and arrhyth-

mias are prevalent. Treatment of ACE-overexpressors with

the Src inhibitor PP1 resulted in partial normalization of

Cx43 levels and diminished arrhythmic burden (Sovari

et al. 2011). Not only is the renin–angiotensin–aldosterone

system pathway implicated in pathologic gap junction

remodeling, but additional circulating factors including

endothelin-1, lipopolysaccharide and TNFa have all been

reported to induce Cx43 tyrosine phosphorylation and

uncoupling (Huang et al. 2003; Lidington et al. 2002;

Postma et al. 1998). To date, gene-targeted murine models

that might elucidate the role of Src in cardiac physiology

and pathology have not been revealing. Unfortunately,

germ line knockout of Src produces osteopetrotic, runted

mice that die in the perinatal period, complicating an

analysis of potential arrhythmic behavior (Soriano et al.

1991). Recently, however, mice harboring a floxed Src

allele have been created by the Muller laboratory (Marcotte

et al. 2012), and analysis of their cardiac phenotype should

be instructive.

New Directions

Paralleling our strategy to elucidate the role of CK1d-

dependent phosphorylation, we have recently begun

replacing tyrosines 247 and 265 in the carboxy-terminus of

Cx43 with either nonphosphorylatable phenylalanine resi-

dues or phosphomimetic glutamic acids. Mice harboring

these mutations should provide a definitive approach to

determine the importance of tyrosine-dependent phos-

phorylation of Cx43 and the role of this modification in the

cardiac gap junction lifecycle, both in health and in

response to pathologic stressors. Moreover, we have gen-

erated mice expressing a Cx43-eGFP fusion protein in the

heart. Our preliminary analysis reveals appropriate colo-

calization of the fusion protein with endogenous Cx43 at

the cardiac intercalated disc. Real time fluorescent imaging

of cardiomyocytes and myocardial tissue slices from these

mice can be used to characterize the numerous signaling

pathways (i.e., kinases, phosphatases, acetylases, ubiquitin

ligases, etc.) that are thought to regulate gap junction for-

mation and internalization. In the future, we anticipate that

these and other genetically engineered murine models will

provide important insights into the mechanisms and con-

sequences of pathologic cardiac gap junction remodeling.
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